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Abstract
In the past several years there has been increasing discussion of elementary
mathematical modeling as an entry level college course.  In several institutions,
modeling is now offered as an alternative to the more traditional college algebra
course, and students can choose to complete a modeling course in fulfillment of a
general education requirement.  Of course, not everyone agrees with this approach.
How can math teachers make an informed choice between college algebra and
modeling?  This paper argues that no such choice is necessary, for many of the
instructional goals of the college algebra course can be addressed in a modeling
course.

College Algebra or Mathematical Models?

The entry-level college mathematics course in many institutions has for
many years been college algebra.  Typically, this is the lowest level course that is
taught for college credit, and with which students can fulfill a general education
requirement in mathematics.  In the past decade, however, an increasing number
of schools have introduced courses in mathematical modeling at this same level.

In another article in this issue of The AMATYC Review, Lumley (2001),
describes the evolution of these modeling courses.  As discussed in that article,



there have been ongoing discussions regarding the merits of college algebra
versus modeling courses.  For non-science and engineering students, modeling
courses are supposed to be more interesting to students and cover material that is
more applicable in their other courses.  On the other hand, some mathematics
teachers have been concerned that replacing college algebra with a modeling
course might water down the curriculum.

The thesis of this paper is that there is no need to choose between the
benefits of a modeling course and the mathematical skills of the traditional
college algebra course -- it is possible to have both. A modeling course can easily
be designed with many of the same instructional goals as a traditional college
algebra course.  But the modeling approach provides a context in which the
algebraic methods become more meaningful and applicable.

To illustrate these ideas, I will present below a progression of three topics
from a modeling course I developed at American University in the mid 1990's.
The course is called Elementary Mathematical Models (EMM).   For a detailed
look at the content and organization, refer to the companion text (Kalman, 1997).
The main emphasis of the presentation here will be on mathematical topics that
are common to both the modeling course and the traditional college algebra
course.

It should be emphasized that there are many variations on entry level
mathematics curricula.  In some institutions college algebra is the most common
choice to fulfill a general education requirement.  In others, college algebra is not
permitted to count for general education credit.  Moreover, there is considerable
variety in the structure and content of college algebra courses, and mathematical
modeling in one form or another appears in an increasing number of college
algebra texts.  Variety exists, as well, among entry level modeling courses.  It is
not my purpose here to survey all of these possibilities, nor to review their relative
merits.  Rather, the goal is to demonstrate in one specific example how core
elements of a traditional college algebra curriculum arise in a course with a
narrow focus on modeling.  In this way, I hope to encourage college algebra
teachers to consider a modeling alternative, and to seek out the core algebra topics
that are generally to be found in modeling curricula.

Before proceeding to the main discussion, a short account of the
philosophy and rationale for EMM will be presented.



Rationale and Philosophy of EMM

The EMM course seeks to serve the same students as traditional college
algebra courses.  These are generally students who have completed three years of
college preparatory mathematics in high school, but who are not headed for
calculus.  They may need to take a mathematics course for a general education
requirement.  They may also need familiarity with the main ideas of college
algebra for quantitative aspects of general education courses in areas outside of
mathematics, such as science, economics, and business.  For most of these
students this will be the only mathematics course completed in college.

The development of EMM was guided by two main goals.  The first was
to create a course that students would perceive as intrinsically interesting and
worthwhile.  The EMM course tries to present a coherent story throughout the
semester, and to convey something of the utility, power, and method of
mathematics.  Among other things, this depends on genuine and understandable
applications.

The second main goal was to emphasize the topics that students are most
likely to meet in mathematical applications in other disciplines.  I am thinking
here of the most elementary applications, formulated in terms of arithmetic and
simple algebraic operations: linear, quadratic, polynomial, and rational functions;
square roots; exponential and logarithmic functions.  These functions are the
building blocks for the simple models that appear in first courses in the physical,
life, and social sciences.  They are also the central focus for the traditional college
algebra course.  That is why EMM shares so many of the instructional goals of
college algebra.

Combining the two goals is complicated by the diversity of the student
audience.   Entry level college math courses serve students with a broad range of
backgrounds.  At one extreme are students for whom this course is a first
exposure to college level mathematics.  At the other extreme are students who
have studied more advanced topics (even calculus) and are looking to refresh
rusty skills, or for an easy way to fulfill a requirement.   The challenge is to make
the material fresh and interesting for the more advanced students, and at the same
time, accessible as a first exposure.  EMM attempts to do this by introducing each
mathematical topic in the context of an application.  The applications are all
analyzed using a common methodology, involving difference equations.  The
difference equation methods are applicable to a number of problems that have
obvious significance and relevance.  The desired mathematical topics come up in
a natural way as difference equations are used to study the applications.



The algebraic emphasis in EMM is restricted to what is really required for
working with these simple models.  Here there is a true departure from the
traditional college algebra course.  For example, logarithms are used to solve
simple exponential equations, but only natural and base 10 logarithms are
discussed.  Equations involving several logarithmic terms with arbitrary or
unknown bases, a standard exercise in college algebra, are not covered in EMM.
Similarly, square roots and fractional exponents are included in EMM, but not
radical expressions for indices other than 2.

As these examples suggest, most of the traditional topics of college
algebra appear in EMM, but they are not carried as far. This is a deliberate
decision based on the two goals mentioned earlier.  By focusing only on the
mathematical manipulations that appear in realistic and understandable
applications, EMM can convincingly demonstrate the utility of the algebra that
does appear.  At the same time, there is an increased emphasis on conceptual
understanding of how mathematics really does get applied, and fundamental
aspects of the modeling framework.

Sample Progression of Three Topics

As mentioned at the outset, the main point of this paper is to show that a
modeling course can include a great deal of standard college algebra. Toward that
end, a progression of three topics from EMM will be presented, with a discussion
of the algebra that goes along with these topics.  The discussion is not intended to
be exhaustive -- there are many other topics in EMM, and many other related
areas of college algebra, beyond what is considered here.  This presentation
should be considered merely as a sample of  college algebra material that arises
naturally in a modeling course.

The three topics discussed below are Geometric Growth, Mixed Geometric
and Arithmetic Growth, and Logistic Growth.  To provide an overall context for
these topics, there follows a brief discussion of difference equations, and the
methods of analysis that are emphasized in EMM, as well as some general
remarks relating this discussion to college algebra.  Then the narrative will
proceed to the three sample topics.

Difference Equations

Difference equations concern recursive patterns in number sequences.  For
example, in the famous Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... , each term is the



sum of the two preceding terms.  That is a recursive pattern because it can be
applied repeatedly, always using terms just computed to find the succeeding
terms.

Recursive patterns can be represented symbolically using difference
equations.  Let fn be the nth term of the Fibonacci sequence.  Since each term is the
sum of the two preceding terms, we have

fn+1 = fn + fn-1.

That is a difference equation -- it expresses a term of the sequence as a
function of preceding terms (and, in some examples, of the index n.)

As another example, consider the sequence 1, 4, 9, 16, 25, ... .  Most math
teachers immediately recognize this as the sequence of perfect squares, so that the
nth term is n2.  But at the level of college algebra, students are more likely to spot
a recursive pattern: the differences between adjacent terms are 3, 5, 7, 9, ...,
successive odd integers.  According to this recursive pattern, the next term after
25 is found by adding the next successive odd integer, 11, to obtain 36.  If we
denote by an the nth term of this sequence, then the difference equation can be
expressed as

an+1 = an + 2n+1.

In contrast, the perfect squares interpretation is represented

an = n2.

This expresses an as a function of the index n and gives the solution of the
difference equation.  Typically, although these solutions are derived with n
restricted to integer values, the problem context makes the solutions meaningful
for fractional values of n as well.  In particular, for solving equations and
graphing, n should be thought of as a real variable.

Recursive patterns and their analysis are a common theme running through
EMM.  The main idea is that recursive patterns, expressed as difference
equations, are natural to observe or hypothesize, while equations for the solutions
of difference equations are convenient for analysis.  The formulation and solution
of difference equations thus provides a general method that can be used in many
applications.

The simplest kinds of recursive pattern lead directly to the elementary
functions studied in college algebra.  As a first example we have arithmetic



growth, characterized by a recursive pattern in which each term is found by
adding a fixed amount to the preceding term.  This produces an arithmetic
progression.  The solution to the difference equation is a linear function of n.  A
slightly more complicated pattern is one in which the differences between
successive terms is not constant, but follows an arithmetic growth pattern.  That is
what we saw in the perfect square example, where the differences are successive
odd integers.  The solution to this kind of difference equation is a quadratic
function of n.  Generalizing arithmetic growth in a different way, geometric
growth occurs when successive terms increase or decrease by a constant
percentage, or equivalently, through multiplication by a fixed constant.  This
gives rise to a geometric progression, and the solution is an exponential function.
Geometric and arithmetic growth can be combined in a general linear model, with
each term a linear function of the preceding term.  This is what was referred to
earlier as mixed arithmetic and geometric growth.  The solution is an exponential
function plus a constant.  Another kind of model, logistic growth, is a generalized
form of geometric growth in which successive terms increase by a percentage that
is not constant, but depends linearly on the preceding term.  This kind of recursive
pattern arises naturally in population models.

Analysis of Difference Equations

Some common methods of analysis apply in all of the difference equation
models described above.  One approach is direct numerical experimentation and
exploration.  Algebra is used in this context to express general relationships.  Part
of the experimentation also involves identifying properties of families of
functions, e.g. linear functions for arithmetic growth models, or exponential
functions for geometric growth models.   Learning about properties of families of
functions is thus a goal of instruction that is common to both EMM and college
algebra.

Another recurring analysis method is fitting a model to actual data by
choosing the best values for certain parameters.  Just formulating this problem
symbolically, and in particular, understanding how and why parameters are used
in the model, stresses important concepts from college algebra.

Direct prediction is a third common method of analysis for difference
equation models.  This is simply computing an for specified values of n.   In EMM
this is approached numerically, graphically, and symbolically.  In particular, when
a solution is known for the difference equation, so that an = f(n), direct prediction
involves function evaluation and reinforces important aspects of the function
concept and notation.



As a final common analysis method, many problems require inverse
prediction.  Here the goal is to predict when a particular value of an will be
observed.  Again thinking of the solution an = f(n), inverse prediction amounts to
specifying the value of f and trying to determine n.  That is equivalent to inverting
the function f.  In EMM, inverse prediction is also addressed numerically,
graphically, and symbolically.  All of these involve skills that are stressed in
college algebra.  In particular, the symbolic approach concerns solving equations,
a central focus for college algebra.

The foregoing material has provided a general description of difference
equations and corresponding methods of analysis.  From the general description
some of the connections between difference equation models and college algebra
topics should already be apparent.  We proceed now to outline three specific
difference equation topics, highlighting the college algebra ideas that arise along
the way.  Note that these topics are not from the beginning of the EMM course.
Students already have a good deal of experience with difference equation methods
before they reach the topics below.

Geometric Growth

As already indicated, geometric growth refers to a recursive pattern in
which each term is a fixed multiple of the preceding term.  This kind of model has
many applications, including population growth, compound interest, radioactive
decay, drug elimination/metabolization, and passive cooling/heating.  A typical
difference equation is given by

Pn+1 = 1.2 Pn

for a population that grows by 20% from one term to the next.  The solution to
this difference equation is

Pn = P0 • 1.2n

where P0 is the initial population size.  A sample direct prediction question would
be What will the population be in year 8?  A sample inverse prediction question is
When will the population reach 10,000?

What topics and skills from college algebra are covered in a unit on
geometric growth?  Properties of exponential functions Abn are heavily
emphasized.  That involves graphs, the significance of the parameters A and b,
solving equations, and the meaning and use of logarithms.  All of these are
standard topics in college algebra, as well.



Mixed Arithmetic and Geometric Growth

In mixed growth models, each term combines a fixed multiple of the
preceding term with a fixed increment.  This kind of pattern arises naturally in
several settings, including amortized loans, installment savings, repeated drug
doses, chemical reactions, and pollution.  In general, mixed growth is
characterized by a difference equation of the form

an+1 = r an + d

where r and d are numerical constants.  The solution to this difference equation
has the form

an = A • rn + C

where the constants A and C depend on the initial value a0 and the parameters r
and d.  When r < 1 there is a horizontal asymptote at C.  This represents an
equilibrium value in the model.

As an example, consider a model for the pollution in a lake.  Assume that
pollution flows into the lake from man-made sources, while clean water flows
into the lake at one end, and the polluted water flows out of the lake at the other.
Under these conditions, it is reasonable to expect that the outflow of pollution
occurs in proportion to the existing concentration in the lake, while the inflow of
pollution occurs at a constant rate.  To be specific, suppose that in each unit of
time, one tenth of the pollution already in the lake flows out, and that three more
units of pollution are added.  The difference equation describing this situation is

pn+1 = .9 pn + 3

and the solution is

pn = (p0 - 30) (.9n) + 30.

Typical questions that might be asked are What will the pollution level be in year
8?  When will the pollution level reach 100?  What will happen in the long term?

A unit on mixed models provides many opportunities to introduce and
reinforce ideas from college algebra.  As a first step toward illustrating this, let us



consider the derivation of a solution.  In EMM this is first introduced in terms of
patterns.  In fact, by this point in the EMM course, students have seen inductive
patterns used many times to discover the solution to a difference equation.  Here
is what the pattern looks like for the pollution example.  First, assuming a starting
value of 20, several terms of the sequence are worked out from the difference
equation:

p0 = 20

p1 = 20(.9) + 3

p2 = 20(.92) + 3(.9+1)

p3 = 20(.93) + 3(.92+.9+1)

Here, the right side of each new equation is obtained by carrying out the
recursive pattern: multiply the previous entry by .9 and add 3.  But the operations
are not carried out numerically.  Rather, the numbers are manipulated
symbolically.  Now the pattern that emerges is pretty clear, and most students will
be able to observe and use that pattern.  So, for example, if you ask them to
predict the entry for n = 8, they will respond correctly with

p8 = 20(.98) + 3(.97+.96+ …+.9+1)

Based on that pattern, the solution is given as

pn = 20(.9n) + 3(.9n-1+.9n-2+ …+.9+1)

This expression is further simplified using the formula for summing a
geometric progression.  That leads to
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This is a natural form for the equation, given the derivation, but it is not the most
convenient form to work with.  Using the lake example again, the solution can be
rearranged to the equivalent equation

pn = 30 - 10(.9n).

Of course, algebraically rearranging one form to arrive at a different form
is one of the most fundamental uses of algebra.  Here it occurs in a way that
makes the utility self-evident.  The derivation of the solution leads us most
naturally to express it in one form, but to use it we prefer a different form.  This
kind of context for symbolic manipulation is unfortunately absent in many college
algebra curricula.  Students are drilled on abstract problems in which one form is
given and another is desired, but there is no indication how such a problem arises.
In any case, the EMM course is full of situations where this kind of algebraic
rearrangement arises in a natural way, and so provides many opportunities for
students to master the techniques of symbolic manipulation, while observing why
those techniques are needed.

As discussed previously, one of the standard questions that arises in EMM
calls for  inverting the solution to a difference equation.  For the example before
us, a typical question would be When will the pollution level reach 100?  That
becomes the equation

30 - 10(.9n) = 100.

As with earlier topics, students are again encouraged to consider questions
like this numerically, graphically, and symbolically.  In particular, the symbolic
solution requires algebraic rearrangement and the use of logarithms.  This topic is
certainly a familiar one in college algebra.

Another interesting aspect of the mixed growth model concerns the
asymptote or equilibrium value.  In the traditional college algebra course,
asymptotes are discussed, and in some treatments the limit notation is even used.
That approach expresses the equilibrium value for the general mixed model in the
form

Cnf
n

=
∞→

)(lim .



The recursive point of view provides an alternative approach to this idea.
Imagine that the model actually reaches equilibrium.  That means when you apply
the recursive procedure (multiply by .9 and add 30) you end up with exactly the
same value you already had.  Therefore the equilibrium value is a fixed point of
the recursive process.  In symbols, if x is the equilibrium value, then

.9x + 3 = x.

Solving this equation shows that the equilibrium value is 30.  This is another
opportunity to use algebra, and reinforces the material on linear equations
encountered earlier in the EMM course.

To summarize, the unit on mixed growth models includes a large number
of topics that are also standard fare in the college algebra curriculum.  In the
course of formulating and analyzing these models students study

• Properties of shifted exponentials  Abn + C

• Graphs, horizontal asymptotes

• Significance of parameters A, b, and C

• Solving equations, logarithms

• Finding fixed points

• Deriving the general solution to the difference equation

• Transforming expressions

All of these involve algebraic skills and ideas common to the college algebra
curriculum.

Logistic Growth

Logistic growth is a modified version of geometric growth. Each term is a
multiple of the preceding term, but the multiplier varies linearly with the size of
the term.  For example, in a population model, assume that the population p goes
up in a year by a factor of .01(200 − p).  When p is small, the growth is
approximately multiplication by 2.  On the other hand, when p is near 100,  the
multiplier is nearly 1, so that very little change in the population occurs.

Let's use this model in a recursive setting.  We start with some initial
population p0.  The next year's population, according to the model, will be found
by multiplying p0 by the factor .01(200 − p0).  That gives p1.  In a similar way, to



compute p2 we multiply p1 by .01(200 − p1).  This process can be repeated any
number of times.  The difference equation for the model is pn+1 = .01(200 - pn)pn.

This kind of model reflects the fact that populations cannot grow
geometrically for very long before something acts to limit growth.  Indeed, the
derivation of the model is fairly natural, as soon as it is observed that a constant
multiplier in geometric growth is not very realistic.  In most situations, we would
expect that the multiplier would have to change as the population size increases,
thus leading to the idea of a multiplier given by a function of the population size.
Adopting the simplest possible function, namely a linear function, produces a
logistic growth model.

Logistic growth models as developed here cannot be solved symbolically.
That is, there is no elementary expression for pn as a function of n.  (This is in
contrast with logistic differential equation models, whose solutions are
combinations of rational and exponential functions).  Nevertheless, the logistic
growth difference equation models have interesting properties that can be
discovered graphically and numerically, and then formulated and verified
symbolically.  In the process, important college algebra topics again make an
appearance.

For the general logistic growth difference equation an+1 = m(L-an)an, with
positive parameters m and L, negative values of an will occur if the population
ever exceeds L.  Assuming the model is only meaningful for positive an, L is an
absolute limit on the size of the population.  The product mL determines the long
term behavior of the model.  As long as mL is between 0 and 4, if the initial value
is between 0 and L, then all succeeding values similarly remain between 0 and L.
For  0 < mL < 1,  the population always dies out, approaching a value of 0
asymptotically.  For 1 ≤ mL < 3, the population approaches an equilibrium value
of L − 1/m.  This can be derived as a fixed point of the recursion, just as in the
case of  mixed growth models.  For 3 ≤ mL < 3.61547…, the population will
approach an oscillation among two or more fixed values.  Finally, for 3.61547…
≤ mL < 4, the future behavior of the model may be chaotic.  Indeed, the logistic
model is one of the simplest examples considered in courses on chaos, and the
emergence of chaotic behavior as mL is increased is a virtual paradigm for the
onset of chaos in discrete systems.

Some of these results are not really accessible in a course at the level of
college algebra.  For example, the existence and identity of the number 3.61547...
requires mathematical methods of calculus (Gulick, 1992, pp 41-50).  But some of
the results can be derived using basic algebra, including properties of quadratic



functions.  It will be too great a digression to go into those topics in detail here,
but in general terms the analysis involves intersections of parabolic and linear
graphs, and some simple inequalities.

A variant on logistic growth, valid for mL < 3, involves the introduction of
harvesting.  Imagine that the example we considered before is a logistic growth
model for fish in a lake, with pn given in units of thousands.  There is an
equilibrium value of 100,000 fish, because the model levels off to a fixed point of
100.  The model predicts that the fish population will approach this equilibrium
value and then remain stable at that level.   Suppose it is decided to harvest some
of these fish, say 20,000, each recursion cycle.  We can add that effect to the
model by simply using the earlier recursion, and then subtracting 20 at the end.
That leads to the difference equation

pn+1 = .01(200 - pn)pn-20.

More generally, the difference equation for logistic growth with modeling always
takes the form an+1 = m(L-an)an - h.

Introducing harvesting in this way modifies the long term predictions for
the model.  There is an interesting interaction between the amount harvested and
the initial value for the model. The fixed points of the recursion are a key to the
analysis.  The fixed point equation is

m(L−x)x − h = x,

or in simplified form,

mx2 + (1−mL)x + h = 0.

Solving this equation to find the fixed points provides a nice review and
application of quadratic equations.  Suppose the roots are r and s, with r < s.  If
the initial population is less than r, or greater than L - r, then the model predicts
that the population will die out.  Otherwise, for an initial population between r
and L - r, the population will approach an equilibrium value of s.  Of course, r and
s depend on the harvesting level, h.  It is not difficult to see that there is a critical
value of h that limits the amount that can be harvested.  Harvesting more than the
critical amount will inevitably kill off the population.  Below the critical level, the
more you harvest, the smaller the interval [r , L - r] to which the initial population
must be confined.



The EMM course does not derive all of these conclusions for the students,
but it does present them and show how to interpret them in the context of specific
models.  More generally, the logistic growth models, with and without harvesting,
make extensive use of graphical methods, as well as properties of quadratic
functions, solving linear and quadratic equations, and simple inequalities.  These
are all topics that appear in college algebra.

Conclusion

One of the main objectives of this paper has been to show the similarity
between the mathematical topics covered in college algebra and those covered in
a modeling course like EMM.  As a secondary goal, the motivations for placing
those topics into a modeling context have been presented.  In general terms, the
rationale is to present the core college algebra topics in a context that shows off
their value and relevance.  In the process, some aspects of the traditional college
algebra curriculum may be de-emphasized or eliminated, and some teachers may
fear that this will lead to a watering down of the course.   That need not be the
case.  As the material on logistic growth demonstrates, there are sophisticated and
substantive quantitative issues that arise naturally in the context of simple
difference equation models.  In EMM, for example, the reduced demands for
abstract symbolic manipulation are more than compensated for by the increased
emphasis on quantitative reasoning in realistic contexts.

Overall, EMM is still primarily concerned with the same mathematical
topics as college algebra, in spite of differences of approach or emphasis.  Indeed,
one of the main goals of EMM is to convey to students the idea that algebra is an
important and powerful tool.  By emphasizing models and applications, EMM
attempts to let students reach this conclusion themselves, from seeing algebra in
action.  The algebra that does appear in the course is presented in a way that
makes it clear why algebra is needed, and what it contributes to formulating and
analyzing models.  In this way, EMM exemplifies one viable prescription for
entry level college mathematics: algebra AND modeling.
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