Entry Level College Math:

Algebra or Modeling

Dan Kalman November 2000

Overview

- Algebra can be taught in Modeling courses
- Modeling provides a context for algebra
- Downplay emphasis on unmotivated manipulative skill
- Increase emphasis on genuine applications of algebra
- Kindler, simpler algebraic manipulations

Only teach skills which arise in realistic problems

Plan

- Difference Equation Models
- Sample Progression of Three Topics
	- **–** Geometric Growth
	- **–** Mixed Geometric and Arithmetic Growth
	- **–**Logistic Growth
- Emphasize algebra opportunities

Difference Equations

- Discrete Sequential Data: a_1, a_2, a_3, \cdots and approximating models
- Simple Recursive Patterns Examples: each term ...
	- Increases or decreases by fixed amount $a_{n+1} = a_n + 50$
	- **–** Increases or decreases by fixed percentage $a_{n+1} = 1.2a_n$
- Solutions to difference equations: explicit equation for a_n as a function $f(n)$; extension to continuous models

Analysis Procedures

- Numerical experimentation, exploration **Algebra:** Express general relationships Properties of model (function) families
- Fitting a model to actual data by choosing best values for parameters **Algebra:** Express problem, parameters
- Direct prediction: evaluate $f(n)$ to predict data value number n
- Inverse Prediction: invert $f(n)$ to predict for which ⁿ the data value will reach ^a specified value **Algebra:** Solve equations

Geometric Growth

- Each term is a fixed multiple of the preceding term; equivalently, each term increases by ^a constant percentage over the preceding term
- Applications: population growth, compound interest, radioactive decay, drug elimination/metabolization, passive cooling/heating
- Example: population doubles each year (increases by 100%) Difference equation $p_{n+1} = 2p_n$ Solution: $p_n = p_0 2^n$ Typical questions: What will the population be in year ⁿ? When will population reach 60000?

Algebra Skills

- Properties of exponential functions Ab^t
- Graphs
- Significance of parameters A, b
- Solving equations; logarithms

Mixed Growth

- Each term combines a fixed multiple of the preceding term with ^a fixed increment;
- Applications: amortized loans, installment savings, repeated drug doses, chemical reactions, pollution
- Difference equation: $a_{n+1} = ra_n + d$
- Solutions are shifted exponentials: $Ar^t + C$
- Horizontal asymptote $=$ equilibrium value $(r < 1)$

Example

- Example: Pollution flows out of ^a lake in proportion to the existing concentration, but flows into the lake at ^a constant absolute rate
- Difference equation $p_{n+1} = .9p_n + 3$ (one tenth of the pollution flows out, and three more units are added, each unit of time)

• Solution:
$$
p_n = p_0(.9^n) + 3(1-.9^n)/(1-.9)
$$

= $(p_0 - 30).9^n + 30$

• Typical questions: What will the pollution load be in year n ? When will it reach 100? What will happen in the long term?

Finding the Solution

Numerical pattern:

$$
p_0 = 20
$$

\n
$$
p_1 = 20(.9) + 3
$$

\n
$$
p_2 = 20(.9^2) + 3(.9 + 1)
$$

\n
$$
p_3 = 20(.9^3) + 3(.9^2 + .9 + 1)
$$

\n:
\n:
\n
$$
p_8 = 20(.9^8) + 3(.9^7 + .9^6 + \dots + .9 + 1)
$$

\n
$$
p_n = 20(.9^n) + 3(.9^{n-1} + .9^{n-2} + \dots + .9 + 1)
$$

Algebraic Simplification

• Solution of difference equation is naturally derived in this form:

$$
p_n = 20(.9^n) + 3\left(\frac{.9^n - 1}{.9 - 1}\right)
$$

• More convenient equivalent form:

$$
p_n = (p_0 - 30).9^n + 30
$$

- This shows an important use of algebra: transforming symbolic expressions
- Here, it appears in ^a natural context generally absent in algebra classes

Equilibrium and Fixed Point

• Traditional Asymptote formulation:

$$
\lim_{t \to \infty} f(t) = C
$$

• Difference equation formulation (fixed point):

$$
p_{n+1}=p_n
$$

• Example:

$$
p_{n+1} = p_n
$$

$$
.9p_n + 3 = p_n
$$

$$
p_n = 30
$$

Algebra Skills

- Properties of shifted exponentials $Ab^t + C$
- Graphs, horizontal asymptotes
- Significance of parameters A, b
- Solving equations; logarithms
- Finding fixed points
- Deriving general form of solution
- Transforming Expressions

Logistic Growth

- Modified version of geometric growth. Each term is ^a multiple of the preceding term, but the multiplier varies linearly with the size of the term
- Example: population p goes up in a year by a factor of .01(200 $-p)$
- Difference equation $p_{n+1} =$ $=.01(200$ $(-p_n)p_n$
- No explicit solution, but interesting qualitative behavior: initial growth similar to exponential, but levels off to equilibrium value

General Behavior

- General Difference Equation: $a_{n+1} = m(L a_n)a_n$
- L is limiting size of population
- Behavior depends on m and L :

$$
0 \le mL < 4 \Rightarrow a_n \in [0, L] \forall n
$$

\n
$$
0 < mL < 1 \Rightarrow a_n \to 0
$$

\n
$$
1 \le mL < 3 \Rightarrow a_n \to L - 1/m
$$

\n
$$
3 \le mL < 3.5699... \Rightarrow oscillation
$$

\n
$$
3.5699... \le mL < 4 \Rightarrow chaos!
$$

Reference:

http://www.mathsoft.com/asolve/constant/fgnbaum/fgnbaum.html

Fixed Points

- Condition: $a_{n+1} = a_n$
- Logistic Growth: $a_{n+1} = [m(L a_n)]a_n$
- Need $m(L a_n) = 1$
- Fixed point $= L 1/m$

Harvesting

- Diff Eqn: $a_{n+1} = m(L a_n)a_n h$
- Fixed Point equation

$$
m(L - a_n)a_n - h = a_n
$$

$$
m(L - x)x - h = x
$$

$$
mx2 + (1 - mL)x + h = 0
$$

- Generally two theoretical fixed points
- Fixed points key to analysis

Fish Example

- Diff Eqn: $p_{n+1} =$ $= .000025(90, 000$ $(-p_n)p_n - h$
- With no harvest, $p_n \to 50,000$
- Graph 1: $p_0 = 50,000$, several h values
- Graph 2: $h = 12,000$, several p_0 values
- Graphs 3,4: $h = 16,000$
- Graphs 5: $h = 15,000$

Graph 1: Varying *h*

 Year

Graph 2: $h = 12,000$, various p_0

 Year

Equilibrium Results

- Two fixed points: $A, B: 0 < A < B < L$ $- A \equiv C$
- Partition Interval $[0, L] = [0, A] \cup [A, C] \cup [C, L]$
- $p_0 \in [A, C] \Rightarrow p_n \to B$
- $p_0 \in [0, A] \cup [C, L] \Rightarrow p_n \to 0$

Derivation

- Key tool: graph of p_{n+1} as a function of p_n
- Graph shows transition from any population size to the succeeding size (see next slide)
- Quadratics: $p_{n+1} = m(L p_n)p_n h = -mp_n^2 +$ mLp_n-h

 One Data V alue

Algebra Skills

- Properties of quadratics
- Solving quadratic equations (finding fixed points)
- Inequalities
- Graphical analysis